Heterophylly of Trapa natans L. Morphological and anatomical structure of leaves

  • Оlena M. Nedukha M.G. Kholodny Institute of Botany of NAS Ukraine. Tereschenkivska str. 2, Kiev, 01601, Ukraine

Abstract

Morphological and anatomical features of floating and submerged (linear and dissected) leaves have been analyzed for Trapa natans L. plants, which characterized by heterophylly. The presence of various types of leaf lamina structure in floating and submerged leaves was confirmed. The morphological and anatomical features of two types of submerged leaves are differed from the features of floating leaves in vegetative phase of growth by the next features: form of leaf lamina, type of mesophyll, cell’s size, number of cellular layers of photosynthesizing parenchyma, and an absence of stomata.

References

Дьяченко А.П. 1978. Сравнительный анализ структурных и функциональных особенностей фотосинтетического аппарата различных экологических групп высших растений В: Мезоструктура и функциональная активность фотосинтетического аппарата. Свердловск: 93–102.
Некрасова Г.Ф., Ронжина Д.А., Малеева М.Г., Пьянков В.И. 2003. Фотосинтетический метаболизм и активность карбоксилирующих ферментов у надводных, плавающих и погруженых листьев гидрофитов. Физиология растений 50: 65–75.
Ронжина Д.А. и Пьянков В.И. 2001. Структура фотосинтетического аппарата листа пресноводных гидрофитов. ІІ. Количественная характеристика мезофилла листа и функциональная активность листьев с разной степенью погружения. Физиология растений 48: 836–845.
Boeger M.R.T. & Poulson M.E. 2003. Morphological adaptations and photosynthesis rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquat. Bot. 75: 123–135.
Frost–Christensen H. & Sand–Jensen K. 1995. Comparative kinetics of photosynthesis in floating and submerged Potamogeton leaves. Aquat. Bot. 51: 121–134.
Frost–Christensensen H. & Floto F. 2007. Resistance to CO2 diffusion in cuticular membranes of amphibious plants and the implication for CO2 acquisition. Plant Cell and Environ. 30: 12–18.
Nedukha O.M. 2006. The influence of water deficit on the structural and functional organization of Sium latifolium leaf cells. Zeszyty Problemowe Postepow Nauk Rolniczych (Warszawa). 509: 75–86.
Nedukha O.M. 2008. Constant water environment and peculiarity of leaf structure of some water plants. Zeszyty Problemowe Postepow Nauk Rolniczych (Warszawa). 524: 189–203.
Schmidt B.L. & Millington W.F. 1968. Regulation of leaf shape in Proserpinaca palustris. Bull. Torrey Bot. Club. 95: 264–286.
Smith F.F. & Walker N.A. 1981. Photosynthesis by aquatic plants: Effects of unstirred layers in relation to assimilation of СО2 and НСО3 and isotopic discrimination. New Phytol. 6: 245–259
Tsukaya H. 2006. Mechanism of leaf–shape determination. Ann. Rev. Plant Biol. 57: 477–496.
Villani Ph. & Etnier S.A. 2008. Natural history of heterophylly in Nymphaea odorata ssp. tuberose (Nymphaeaceae). Northeastern Naturalist 15(2):177–188.
Fig. 1. General view of floatingleaves of Trapa natans.
Published
2012-04-01
How to Cite
NEDUKHA, Оlena M.. Heterophylly of Trapa natans L. Morphological and anatomical structure of leaves. Modern Phytomorphology, [S.l.], v. 2, p. 29-33, apr. 2012. ISSN 2227-9555. Available at: <http://ojs.phytomorphology.org/index.php/MP/article/view/373>. Date accessed: 11 apr. 2018. doi: https://doi.org/10.5281/zenodo.162428.
Section
Research Articles