Computer aided identification of the Ficus L. species by the lamina shape

  • Alexander Z. Gluhov Donetsk botanical garden NAS of Ukraine, Illich's Avenue 110, 83059 Donetsk, Ukraine
  • Ivan I. Strelnikov Donetsk botanical garden NAS of Ukraine, Illich's Avenue 110, 83059 Donetsk, Ukraine

Abstract

The development of computer aided plant species determination is the urgent task of the botanical science. Identification is often bases on the morphology of the lamina. It is promising to describe the leaf shapes through the harmonic values of elliptic Fourier decomposition, but the effectiveness of this approach requires further verification. Another task is a comparative evaluation of different classification algorithms. The work was conducted on the 2812 leaves images of the 15 Ficus L. species. To solve the described tasks the optimal set of the Fourier decomposition parameters was determined. The best results are achievable by using the classification with 18 Fourier harmonics. Number of reference points on the outline does not affect the result of the models. We compared an identification accuracy of the 30 classification algorithms. Random forest algorithm had the highest classification accuracy – 98%. Combining different prediction algorithms by stacking improves the efficiency of the leaf shapes recognition.

References

Breiman L. 2001. Random forests. Mach. Learn 45 (1): 5–32.
Breiman L., Friedman J., Olshen R., Stone C. 1984. Classification and regression trees. Wadsworth.
Claude J. 2008. Morphometrics with R. Springer, New York.
Friedman J. 1991. Multivariate adaptive regression splines. Ann. Stat. 19 (1): 1–141.
Friedman J.H. 2002. Stochastic gradient boosting. Comp. Stat. Data A. 38 (4): 367–378.
Hastie N. 2009. Elements of statisical learning – data mining, inference and prediction (2nd edition). Springer, New York.
Hothorn T., Lausen B., Benner A., Radespiel-Troger M. 2004. Bagging survival trees. Stat. Med. 23 (1): 77–91.
Kuhn M. 2008. Building predictive models in R using the caret package. J. Stat. Soft. 28 (5): 1–26.
Kumar N., Andreou A. 1998. Heteroscedastic discriminant analysis and reduced rank HMMs for improved speech recognition. Speech Commun. 25: 283–297.
Lee C.-L., Chen S.-Y. 2006. Classification of leaf. Int. J. Imaging Sys. Tech. 16 (1): 15–23.
Martens H., Næs T. 1989. Multivariate calibration. Wiley, Chichester.
Menze B.H., Kelm B.M., Splitthoff D.N., Koethe U., Hamprecht F.A. 2011. On oblique random forests. ECML PKDD'11 Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases. Vol. 2: 453-469.
Neto J.C. 2006. Plant species identification using Elliptic Fourier leaf shape analysis. Comp. Electr. Agricult. 50 (2): 121–134.
Phatak A., Kiiveri H., Clemmensen L.H., Wilson W.J. 2010. Constructing dependency networks using sparse linear regression. Bioinformatics 26 (12): 1576–1577.
Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. 1992. Numerical recipes in C. Cambridge University Press, Cambridge.
Quinlan R. 1993. Programs for machine learning. Morgan Kaufmann Publishers.
R Core Team 2012. R: A language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria. http://www.R-project.org/.
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9: 676–682.
Simon N. 2011. Regularization paths for Cox's proportional hazards model via coordinate descent. J. Stat. Soft. 39 (5): 1–13
Singh K., Gupta I., Gupta S. 2010. SVM-BDT PNN and Fourier moment technique for classification of leaf shape. Int. J. Signal Process., Image Process. Pattern Recogn. 3 (4): 67–78.
Strobl C., Malley J., Tutz G. 2009. An introduction to recursive partitioning. Psy. Meth. 14 (4): 323–348.
Tibshirani R., Hastie T., Narasimhan B., Chu G. 1999 Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. U.S.A. 99 (10): 6567-6572. doi: 10.1073/pnas.082099299
Venables W.N., Ripley B.D. 2002. Modern applied statistics with S. 4th edition. Springer.
Wang X.-F. 2005. Recognition of leaf images based on shape features using a hypersphere classifier. Adv. Intel. Computing. 364: 87–96.
Wolpert D. 1992. Stacked generalization. Neural Networks 5 (2): 241–259.
Fig. 1. The influence of the harmonics number on the accuracy of the leaf plate’s identification: n – number of observations.
Published
2014-04-01
How to Cite
GLUHOV, Alexander Z.; STRELNIKOV, Ivan I.. Computer aided identification of the Ficus L. species by the lamina shape. Modern Phytomorphology, [S.l.], v. 6, p. 155-160, apr. 2014. ISSN 2227-9555. Available at: <http://ojs.phytomorphology.org/index.php/MP/article/view/145>. Date accessed: 11 apr. 2018. doi: https://doi.org/10.5281/zenodo.160620.
Section
Research Articles