Molecular, histological and embryological analysis of regenerants obtained during in vitro culture of immature embryos of apomictic Taraxacum belorussicum Val. N. Tikhom.

  • Monika Tuleja Department of Plant Cytology and Embryology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Kraków, Poland
  • Halina Ślesak Department of Plant Cytology and Embryology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Kraków, Poland
  • Krystyna Musiał Department of Plant Cytology and Embryology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Kraków, Poland
  • Andrzej J. Joachimiak Department of Plant Cytology and Embryology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Kraków, Poland

Abstract

Dandelion as a model herbal plant has a wide application in analysis of genetic, molecular background of apomictic reproduction. Taraxacum belorussicum Val. N. Tikhom. is a triploid species belonging to Taraxacum sect. Palustria. As an obligatory apomictic plant it presents attractive experimental material for apomixis and somatic embryogenesis aspects. Here we present the preliminary studies showing direct organogenesis and genetic stability of the regenerants achieved during in vitro culture of dandelion along with their embryological analysis.

References

Asker S.E., Jerling L. 1992. Apomixis in plants. CRC Press, Boca Raton, FL.
Bicknell R.A., Koltunow A.M. 2004. Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16: 228–245.
Ilu C., Kitts D.D. 2003. Antioxidant, proxidant, and cytotoxic activities of solvent fractioned dandelion (Taraxacum officinale) flower extracts in vitro. J. Agric. Food. Chem. 51: 301–310.
Jach M., Przywara L. 2000. Somatic embryogenesis and organogenesis induced on the immature zygotic embryos of Helianthus annuus L. – the role of genotype. Acta Biol. Cracov. Ser Bot. 42: 83–86.
Jamshieed S., Das S., Sharma M.P., Srivastava P.S. 2010. Difference in in vitro response and esculin content in two population of Taraxacum officinale Weber. Physiol. Mol. Biol. Plants 16: 353–359.
Marciniuk J., Rerak J., Grabowska-Joachimiak A., Jastrząb I., Musiał K., Joachimiak A.J. 2010. Chromosome numbers and stomatal cell lenght in Taraxacum sect. Palustra from Poland. Acta Biol. Cracov. Ser. Bot. 52:117–121.
Musiał K., Górka P., Kościńska-Pająk M., Marciniuk P. 2013. Embryological studies in Taraxacum udum Jordan (sect. Palustria). Botany 91: 614–620.
Noyes R.D. 2007. Apomixis in the Asteraceae: diamonds in the rough. Func. Plant Sci. Biotech. 1: 207–222.
Popielarska-Konieczna M., Kozieradzka-Kiszkurno M., Świerczyńska J., Góralski G., Ślesak H., Bohdanowicz J. 2008. Ultrastructure and histochemical analysis of extracellular matrix surface network in kiwifruit endosperm-derived callus culture. Plant Cell Rep. 27: 1137–1145.
Trejgell A., Chernetskyy M., Podlasiak J., Tretyn A. 2013. An efficient system for regenerating Taraxacum pieninicum Pawł. from seedling explants. Acta Biol. Cracov. Ser. Bot. 55: 73–79.
Williams E.G., Maheswaran G. 1986. Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann. Bot. 57: 443–462.
Van Dijk P., de Jong H., Vijverberg K., Biere A. 2009. An apomixis-gene’s view on dandelions. In: Schön I., Martens K., Van Dijk P. (eds), Lost sex. The evolutionary biology of parthenogenesis: 474–493. Springer, Dordrecht, Heidelberg, London, New York.
No original images
Published
2014-04-01
How to Cite
TULEJA, Monika et al. Molecular, histological and embryological analysis of regenerants obtained during in vitro culture of immature embryos of apomictic Taraxacum belorussicum Val. N. Tikhom.. Modern Phytomorphology, [S.l.], v. 6, p. 33-35, apr. 2014. ISSN 2227-9555. Available at: <http://ojs.phytomorphology.org/index.php/MP/article/view/104>. Date accessed: 11 apr. 2018. doi: https://doi.org/10.5281/zenodo.160427.
Section
Correspondences